Heat maximal function on a Lie group of exponential growth
نویسندگان
چکیده
منابع مشابه
University of Cambridge Approximating the Exponential from a Lie Algebra to a Lie Group Approximating the Exponential from a Lie Algebra to a Lie Group
Consider a diierential equation y 0 = A(t; y)y; y(0) = y0 with y0 2 G and A : R + G ! g, where g is a Lie algebra of the matricial Lie group G. Every B 2 g can be mapped to G by the matrix exponential map exp (tB) with t 2 R. Most numerical methods for solving ordinary diierential equations (ODEs) on Lie groups are based on the idea of representing the approximation yn of the exact solution y(t...
متن کاملSome exponential inequalities for Semisimple Lie group
Let ‖| · ‖| be any give unitarily invariant norm. We obtain some exponential relations in the context of semisimple Lie group. On one hand they extend the inequalities (1) ‖|e‖| ≤ ‖|eReA‖| for all A ∈ Cn×n, where ReA denotes the Hermitian part of A, and (2) ‖|e‖| ≤ ‖|ee‖|, where A and B are n×n Hermitian matrices. On the other hand, the inequalities of Weyl, Ky Fan, Golden-Thompson, Lenard-Thom...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولApproximating the exponential from a Lie algebra to a Lie group
Consider a differential equation y ′ = A(t, y)y, y(0) = y0 with y0 ∈ G and A : R+ × G → g, where g is a Lie algebra of the matricial Lie group G. Every B ∈ g can be mapped to G by the matrix exponential map exp (tB) with t ∈ R. Most numerical methods for solving ordinary differential equations (ODEs) on Lie groups are based on the idea of representing the approximation yn of the exact solution ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Academiae Scientiarum Fennicae Mathematica
سال: 2012
ISSN: 1239-629X,1798-2383
DOI: 10.5186/aasfm.2012.3729